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Abstract

This paper presents a class of kernel-free boundary integral (KFBI) methods for general elliptic boundary value prob-
lems (BVPs). The boundary integral equations reformulated from the BVPs are solved iteratively with the GMRES
method. During the iteration, the boundary and volume integrals involving Green’s functions are approximated by struc-
tured grid-based numerical solutions, which avoids the need to know the analytical expressions of Green’s functions. The
KFBI method assumes that the larger regular domain, which embeds the original complex domain, can be easily parti-
tioned into a hierarchy of structured grids so that fast elliptic solvers such as the fast Fourier transform (FFT) based Pois-
son/Helmholtz solvers or those based on geometric multigrid iterations are applicable. The structured grid-based solutions
are obtained with standard finite difference method (FDM) or finite element method (FEM), where the right hand side of
the resulting linear system is appropriately modified at irregular grid nodes to recover the formal accuracy of the under-
lying numerical scheme. Numerical results demonstrating the efficiency and accuracy of the KFBI methods are presented.
It is observed that the number of GMRES iterations used by the method for solving isotropic and moderately anisotropic
BVPs is independent of the sizes of the grids that are employed to approximate the boundary and volume integrals. With
the standard second-order FEMs and FDMs, the KFBI method shows a second-order convergence rate in accuracy for all
of the tested Dirichlet/Neumann BVPs when the anisotropy of the diffusion tensor is not too strong.
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1. Introduction

The finite difference and finite element methods are two major and competing numerical methods for solv-
ing elliptic boundary value problems (BVPs) [1]. The finite difference method is popular for simple structured
domains and its ability to make use of fast solvers for constant coefficient BVPs. The finite element method is
well-known for its flexibility to work with unstructured grids for problems on complex domains. The grid gen-
eration process associated with finite element method, however, is generally more challenging, particularly
when the domain boundary is moving or the equation coefficients are discontinuous. Consequently, some
recent research interest has focused on the use of structured (Cartesian) grid methods, or meshfree methods
[2–4], to avoid the problems with grid generation.

Most structured grid methods in the literature reformulate the BVP as an interface problem and work with
finite difference method on Cartesian grids. The grid lines are not required to be aligned with the domain
boundary or the interface of discontinuities, which generally degrades the accuracy of numerical solutions.
To recover the original accuracy of the finite difference method, techniques such as smoothing or regulariza-
tion of discontinuities or correction of the discretization scheme are usually employed.

Representative existing methods are the immersed boundary (IB) method originally developed by Peskin in
the 1970s [5–7], the immersed interface (II) method proposed by LeVeque and Li [8], the ghost of fluid (GF)
method originally developed by Osher and his co-workers [9,10] and later extended by Liu [11,12] and Mayo’s
grid-based boundary integral method [13,14].

In the IB method, the complex domain boundary is regarded as being immersed in a fluid and modeled via
a singular source on the interface. The IB method is a smoothing method with a transition region that smears
discontinuities as it uses a discrete delta function to distribute the singular source to nearby grid nodes. It is
typically only first-order accurate in higher space dimensions. Some high-order IB schemes have been pro-
posed recently in the literature [15–21].

Unlike the IB method, the II method is a sharp interface method. In the II method, the finite difference
stencil used to discretize the interface problem is modified at irregular grid nodes, where the discrete elliptic
operator makes use of nodes from both sides of the interface. This is achieved by incorporating interface jump
conditions into local Taylor expansions of the elliptic operator at the irregular grid nodes. The resulting
scheme is of second-order accuracy and preserves the jumps across the interface. Modern versions of the II
method are robust and efficient [22–27], and has been successfully applied to a variety of interface-related
problems [28–33].

The II method has also been generalized for discretization of a non-diagonal anisotropic Laplacian in both
two and three space dimensions by Dumett and Keener [34,35]. Their method is currently first-order only, but
it is stable for a wide range of anisotropic matrices when the anisotropy ratio is not too large and not too
small. The resulting matrix with the method is nonsymmetric non-negative definite.

In the GF method, the boundary or interface jump conditions are captured implicitly by extending values
across the interface into a ghost fluid. On irregular grid nodes, when the finite difference discretized Laplacian
refers to a node from the other side of the interface, a ghost fluid value instead of the real one will be supplied.
Such a jump condition capturing procedure is directly incorporated into the numerical discretization in a way
that the symmetry of the finite difference coefficient matrix is maintained. The original GF method [11,12] for
the variable coefficient Poisson equation is first-order accurate only. A recent work by Hou and Liu [36] shows
that the GF method has been further extended to work with triangular grids, resulting in a second-order accu-
rate method.

Mayo’s approach combines boundary integral equations with finite difference methods to solve Poisson and
biharmonic equations on irregular domains [13,14,37–40]. The complex domain is embedded into a larger rect-
angular domain, and the problem is reformulated as an elliptic interface problem such that the solution is har-
monic in the rectangle, excluding the boundary of the original domain. After the source density is solved from
the boundary integral equation, the jumps of the solution and its partial derivatives are naturally calculated.
To recover the formal accuracy of the underlying finite difference scheme, the jumps are further used to make
corrections for the right hand side of the discrete linear system corresponding to the irregular grid nodes. The
corrected linear system is finally solved using a fast Poisson solver. The grid-based boundary integral method
has been generalized to different problems such as biharmonic equations, Stokes and Navier–Stokes
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equations. Recently, Beale proposed methods for evaluating the (nearly) singular integrals in both two and
three space dimensions, which make the grid-based boundary integral method more accurate [41,42]. Mayo’s
approach is fast when combined with the fast multipole method [43] provided that the Green’s functions are
analytically known.

Other Cartesian grid methods similar to the II and GF methods include Berthelsen’s decomposed II method
[44], Zhou etc.’s high-order matched interface and boundary (MIB) method [45], Johansen and Colella’s vol-
ume of fluid (VOF) method [46,47], Tseng and Ferziger’s ghost-cell immersed boundary method [48], Oever-
mann and Klein’s Cartesian grid finite volume method [49]. More methods that use Cartesian grids are the
phase field method by Cahn and Hilliard [50] and the capacitance matrix method by Proskurowski and Widl-
und [51].

This paper presents a class of kernel-free boundary integral (KFBI) methods for solving the elliptic BVPs.
It is similar, in spirit, to Li’s augmented strategy for constant coefficient problems [25,52], Wiegmann and
Bube’s explicit jump II method [26] and Calhoun’s Cartesian grid method [53], and is a direct extension of
Mayo’s original approach [13,41,42]. The most obvious difference of the method from others is that it works
with more general elliptic operators with possible anisotropy and inhomogeneity. The KFBI method itera-
tively solves the boundary integral equations with a Krylov subspace method, the GMRES method [54,55].
During the iteration, the double/single layer potentials are approximated by limit values of structured grid-
based numerical solutions while direct evaluation of the volume and boundary integrals is avoided. Hence,
the analytical expressions of Green’s functions are not required. The KFBI method assumes that the larger
regular domain, into which the original complex domain is embedded, can be easily partitioned into a hier-
archy of structured grids so that fast elliptic solvers such as the fast Fourier transform (FFT) based Poisson
(Helmholtz) solvers or those based on geometric multigrid iterations are applicable. Because the irregular
nodes on the structured grids introduce lower order errors, the method corrects the right hand side of the dis-
crete linear system, based on the unknown density computed in the previous GMRES iteration step and the
jump relations of the double or single layer potential and its flux, recovering the formal accuracy of the
applied numerical scheme.

In Section 2, we describe the inhomogeneous and anisotropic elliptic boundary value problems to be solved.
In Section 3, some results from the potential theory for the general elliptic BVPs are presented. In Section 4,
we give the boundary integral equations corresponding to the Dirichlet and Neumann BVPs and the iterations
used to solve the boundary integral equations. The KFBI algorithm is summarized in Section 5. In Section 6,
we show the interface problems for the computation of volume and boundary integrals. Section 7 describes the
spatial discretization of the interface problem on the larger regular domain with structured grids. Section 8
explains how to calculate jumps of the solution derivatives with the known densities. Section 9 derives the cor-
rection formula for the linear system resulting from spatial discretization of the interface on the structured
grid. Section 10 gives the interpolation technique to extract values of the volume and boundary integrals at
points on the boundary curve. Numerical results with the KFBI method for Dirichlet and Neumann BVPs
are presented in Section 11. Finally, the advantages, disadvantages and applications of the method are dis-
cussed in Section 12.

2. Boundary value problems

The kernel-free boundary integral (KFBI) method described here is valid for general elliptic boundary value
problems (BVPs) with either Dirichlet or Neumann boundary conditions on either simply or multiply con-
nected bounded domains. For simplicity of explanation, we restrict ourselves to the discussion on the appli-
cation of the method for solving BVPs on simply connected bounded domains. For the same reason, we only
present the method in two space dimensions. Its extension to three space dimension is analogous.

Let X � R2 be a simply connected bounded domain with smooth boundary oX. Let B be a larger regular
domain, which completely contains the domain X. Assume that the boundaries of the original complex
domain X and the regular domain B have no intersection, i.e., X � B and oX \ oB ¼ ;. Denote by
Xc � B n X the complement of the domain X in B.

The regular domain B can be chosen flexibly to be a triangle, a rectangle, a circle, a ring or any other reg-
ularly shaped domains as long as the Green’s function on B exists and fast elliptic solvers are readily available.
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Let r ” r(p) be a symmetric and positive definite (SPD) diffusion tensor and j ” j(p) be a non-negative reac-
tion coefficient. Assume that both are well defined in the regular domain B. Then we introduce an (negative)
elliptic operator
L � r � rðxÞr � jðxÞ: ð1Þ

Additionally, assume that the diffusion tensor r(x) and the reaction coefficient j(x) are at least continu-
ously differentiable over the regular domain B. In practice, these two quantities may only be defined inside
the original complex domain X. In this case, we could use the KFBI method proposed here to derive
biharmonic extensions of r(p) and j(p) by solving biharmonic equations in the complement Xc such that
the diffusion tensor, the reaction coefficient and their normal derivatives across the domain boundary are
continuous.

Let Hr�1(X), Hr+1/2(oX) and Hr�1/2 (oX) be the standard Sobolev spaces, with r > k and k being a positive
integer. Given a source function f 2 Hr�1(X) and boundary data gD 2 Hr+1/2(oX) or gN 2 Hr�1/2(oX), we con-
sider solving the elliptic equation
LuðpÞ ¼ f ðpÞ in X; ð2Þ

with either the pure Dirichlet boundary condition
uðpÞ ¼ gDðpÞ on oX; ð3Þ

or the pure Neumann boundary condition
n � rruðpÞ ¼ gN ðpÞ on oX; ð4Þ

respectively. Here, n denotes the unit outward normal pointing outside of the bounded domain X. Eqs. (2) and
(3) form an interior Dirichlet boundary value problem. Eqs. (2) and (4) form an interior Neumann boundary va-

lue problem. Based on the assumptions described above, these two BVPs are well-posed (except that, when
j(x) = 0, the solution to the Neumann BVP is not unique but only up to an additive constant).

In this work, we assume that all of the variables and functions encountered are smooth enough such that
the derivatives that appear are meaningful.

For a piecewise smooth dependent variable v(p), defined on the larger regular domain B, which has possible
discontinuities only on the domain boundary oX, let
vþðpÞ � lim
q2X
q!p

vðqÞ and v�ðpÞ � lim
q2Xc

q!p

vðqÞ for p 2 oX ð5Þ
be the limit values of v(p) from either side of the domain boundary. Assume the domain X is on the positive
side of the boundary curve oX while the complementary domain Xc is on the negative side. The jump of the
variable v(p) across the domain boundary from negative to positive side is denoted by
½vðpÞ� � vþðpÞ � v�ðpÞ on oX: ð6Þ
3. Basics of potential theory

Let us first summarize some facts from the potential theory [56–60] for the general elliptic operator L as it is
the foundation of the KFBI method.

Let G(q;p) be the Green’s function of the elliptic operator L on the regular domain B, which satisfies
LGðq; pÞ ¼ dðq� pÞ in B; ð7aÞ
Gðq; pÞ ¼ 0 on oB; ð7bÞ
for each fixed p 2 B. Here, d is the Dirac delta function.

Theorem 1. If the source function f(p) in (2) is bounded and integrable in X, then the integral of the product of the

source function f(p) and the Green’s function G(q;p), i.e.,
uðpÞ ¼ ðGf ÞðpÞ �
Z

X
Gðq; pÞf ðqÞdq; ð8Þ
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Solves the elliptic Eq. (2), and LðGf Þ ¼ 0 in Xc. Here, G represents the volume integral operator. Moreover, the

solution is continuously differentiable in B if f(p) is continuous in X.

Define two integral operators K : H 1=2ðoXÞ ! H 1=2ðoXÞ and K� : H�1=2ðoXÞ ! H�1=2ðoXÞ by
ðKuÞðpÞ �
Z

oX
nq � rðqÞrGðq; pÞuðqÞdsq for u 2 H 1=2ðoXÞ; ð9aÞ

ðK�wÞðpÞ �
Z

oX
np � rðpÞrGðq; pÞwðqÞdsq for w 2 H�1=2ðoXÞ; ð9bÞ
with kernels
Kðp; qÞ � nq � rðqÞrGðq; pÞ; ð10aÞ
K�ðp; qÞ � np � rðpÞrGðq; pÞ; ð10bÞ
respectively.

Theorem 2. The boundary integral operator K defined in (9a) introduces a double layer potential
uðpÞ ¼ ðKuÞðpÞ ð11Þ

with density u(q) 2 H1/2(oX). The double layer potential (11) has a jump across the domain boundary with

strength equal to u(q) while the normal flux np Æ r$u(p) is continuous. Specifically,
uþðpÞ � uðpÞ ¼ 1

2
uðpÞ on oX; ð12aÞ

u�ðpÞ � uðpÞ ¼ � 1

2
uðpÞ on oX; ð12bÞ
and
n � rruþðpÞ ¼ n � rru�ðpÞ on oX: ð13Þ
Theorem 3. Related to the boundary integral operator K� defined in (9b), a single layer potential is introduced

by Z

uðpÞ ¼ �ðNwÞðpÞ � �

oX
Gðq; pÞwðqÞdsq ð14Þ
with density w(q) 2 H�1/2(oX). The single layer potential (14) is continuous across the domain boundary oX but
the normal flux np Æ r $u(p) has a jump with strength equal to w(q). Specifically,
uþðpÞ ¼ u�ðpÞ on oX ð15Þ

and
n � rruþðpÞ � n � rruðpÞ ¼ 1

2
wðpÞ on oX; ð16aÞ

n � rru�ðpÞ � n � rruðpÞ ¼ � 1

2
wðpÞ on oX: ð16bÞ
Theorem 4. In the regular domain B excluding the domain boundary oX, the double and single layer potentials

satisfy the elliptic Eq. (2) with the source term f(p) vanishing, i.e.,
LðKuÞ ¼ 0 in B n oX; ð17aÞ
LðNwÞ ¼ 0 in B n oX: ð17bÞ
Finally, we have the following theorem on the spectrum of the integral operators (cf. Kellogg [56] or Kress [58]
etc.).
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Theorem 5. The integral operators defined in (9a) and (9b) are adjoint to each other. Both of them have the same

spectrum, which is contained in the interval (�1/2,1/2]. The constant k = 1/2 can be an eigenvalue of the

operators only if the reaction coefficient in the elliptic operator L vanishes, i.e., j = 0.
4. Boundary integral equations

The solution to the Dirichlet boundary value problem, defined by (2) and (3), can be expressed as a sum of a
volume integral and a double layer potential
uðpÞ ¼ ðGf ÞðpÞ þ ðKuÞðpÞ in X ð18Þ

with density u(p) satisfying the boundary integral equation
1

2
uþKuþ Gf ¼ gD on oX: ð19Þ
The solution to the Neumann boundary value problem, defined by (2) and (4), can be expressed as a sum of a
volume integral and a single layer potential
uðpÞ ¼ ðGf ÞðpÞ � ðNwÞðpÞ in X ð20Þ

with density w(p) satisfying the boundary integral equation
1

2
w�K�wþ n � rrðGf Þ ¼ gN on oX: ð21Þ
By the spectrum properties of the integral operators, both the integral Eqs. (19) and (21), are non-singular
for general SPD diffusion tensor r and reaction coefficient j P 0 except that, when the reaction coefficient
is equal to zero (j = 0), the integral Eq. (21) corresponding to the Neumann BVP becomes singular. In
the non-singular cases, those two integral equations can be respectively solved by the following simple
iterations:
um ¼
1

2
um þKum þ Gf ; ð22aÞ

umþ1 ¼ um þ 2bðgD � umÞ ð22bÞ

and
np � rrum ¼
1

2
wm �K�wm þ np � rrðGf Þ; ð23aÞ

wmþ1 ¼ wm þ 2bðgN � np � rrumÞ ð23bÞ

for m = 0, 1, 2, . . . , with iteration parameter b 2 (0, 1). Each of the simple iterative methods converges to a pre-
scribed tolerance within a fixed number of steps with any initial guess u0 or w0 in the solution space. The num-
ber of iterations depends on the shape of the domain, the diffusion tensor r and the reaction coefficient j. For
the singular integral equation corresponding to the Neumann BVP with vanishing reaction coefficient (j = 0),
an additional technique has to be applied for the simple iteration to converge.

For general elliptic operators, due to the un-availability of Green’s functions, it is usually very difficult to
directly evaluate the volume and boundary integrals in (22) and (23). For this, we only calculate them approx-
imately. The analytical expressions of Green’s functions are not required. In this sense, the method proposed
in this work is called a kernel-free boundary integral method.

The densities, um and wm, are discretized by periodic cubic splines, which allow easy and efficient calculation
of derivatives of the densities. Specifically, we assume that we are given MoX quasi-uniformly spaced nodes on
the boundary oX (see Fig. 1). Only at the curve nodes are the values of the density, u or w, updated by the
simple iterations (22) and (23). For the Dirichlet BVP, the right hand side of (22a) is replaced by the limit val-
ues of a grid-based approximate solution. For the Neumann BVP, the right hand side of (23a) is replaced by
the limit values of the normal flux of an approximate solution. The details of the procedure for computing the
limit values will be described in Section 10.



Fig. 1. The kernel free boundary integral method assumes that the larger regular domain, which embeds the complex computational
domain X, can be easily partitioned into a hierarchy of structured grids so that fast elliptic solvers such as the fast Fourier transform (FFT)
based Poisson (Helmholtz) solvers or those based on geometric multigrid iterations are applicable. The boundary oX of the complex
domain is partitioned into quasi-uniform curve segments. The number of the nodes on the curve is denoted by MoX. The values of the
unknown densities um and wm are defined only at the MoX curve nodes. Other values of the densities and their tangential derivatives are
reconstructed by a standard periodic twice continuously differentiable cubic spline.
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As the right hand sides of (22a) and (23a) are approximated by grid-based numerical solutions, the max-
imum eigenvalues of the discrete boundary integral operators, corresponding to K and K�, could be larger
than a half but each has an error to the exact one on the order of a power of the grid size that is used to derive
the approximate solution [61–63]. From the viewpoint of practical implementation, the iteration parameter b
will have an upper bound slightly less than one, and the simple iterations, (22) and (23), are still guaranteed to
converge as long as the grids used to compute the approximate solutions are fine enough such that the max-
imum eigenvalues of the discrete integral operators are bounded by one, for example.

Nevertheless, the simple iterations for solving the boundary integral equations could be further improved
by a Krylov subspace method such as the GMRES iteration [54,55]. For example, if we rewrite the boundary
integral Eq. (19) as
Ku ¼ �gD on oX; ð24Þ

with
Ku � 1

2
uþKu; �gD � gD � Gf ; ð25Þ
and rewrite the boundary integral Eq. (21) as
K�w ¼ �gN on oX; ð26Þ

with
K�w � 1

2
w�K�w; �gN � gN � n � rrðGf Þ; ð27Þ
the application of the GMRES iterative method to solving (24) and (26) simply requires computation of �gD, �gN

and the actions Ku, K�w of the operators K, K� on u and w, respectively. Once again, the right hand sides of
(25) and (27) can be approximated by limit values of approximate solutions to the Dirichlet and Neumann
BVPs while direct evaluation of volume and boundary integrals are avoided.

5. Algorithm overview

The key to the KFBI method for solving the boundary integral equation, (19) or (21), with the simple iter-
ations described in Section 4 or the GMRES method, is the approximation of the associated volume and
boundary integrals using structured grid-based solutions. The procedure for computing Gf and Num during
each iteration is summarized as follows:

Step 1. Set up the domain boundary. Partition the boundary curve into a set of quasi-uniformly spaced curve
segments. Denote the discretization nodes by qj (j = 1, 2, . . . ,MoX). Compute normals, tangents and
curvatures of the boundary at the discretization nodes.
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Step 2. Set up the structured grid. Embed the complex domain X into a larger regular domain B. Partition B
into a hierarchy of structured grids. Denote the finest grid by T h. Identify regular and irregular nodes
of the structured grid T h. Locate the points where the domain boundary oX intersect with the edges
(and diagonals) of the elements of grid T h. Compute tangential and normal unit directions of the
boundary curve at those intersected points too.

Step 3. Discretize the elliptic operator L on the structured grid T h with the finite difference method or the
finite element method. Denote the stiffness matrix by Ah. Similarly, assembly the right hand side of
the linear system, denoted by fh.

Step 4. Following Section 8, given the approximate density um or wm, compute the jumps of the solution and its
partial derivatives, [um], [oum/ox], [oum/oy], [o2um/ox2], [o2um/oxoy] and [o2um/oy2], at the points where the
domain boundary intersect with the edges (and diagonals) of the elements of the grid T h.

Step 5. Following Section 9, with the jumps computed in step 4, compute the correction formula Cm,h and
modify the right hand side fh. Denote the resulting source term by fm,h.

Step 6. Solve the modified linear system Ahum,h = fm,h with a fast elliptic solver such as the FFT-based Poisson
(Helmholtz) solver or a geometric multigrid solver.

Step 7. Following Section 8, with the approximate density um or wm, compute the jumps of the solution and its
partial derivatives, [um,h], [oum,h/ox], [oum,h/oy], [o2um,h/ox2], [o2um,h/oxoy] and [o2um,h/oy2], at the discret-
ization nodes of the boundary curve, qj (j = 1, 2, . . . ,MoX).

Step 8. Following Section 10, use the jumps computed in step 7 to compute the limiting values of the approx-
imate solution um,h or its normal flux n Æ r$um,h at the curve nodes qj (j = 1, 2, . . . ,MoX).

Note that the steps 1–3 above need to be executed only once. The limiting values computed in step 8 will
approximate the volume or boundary integrals ( Gf , Kum, Nwm or K�wm), respectively. With the approxima-
tion, the unknown density um or wm is updated by the simple iterations described in Section 6, or the GMRES
iterative method [54,55]. Then repeating steps 4–8 above continues the iteration until a stopping criterion is
met (say, the residual is small enough).

In the limit as the iteration for the density um or wm converges, the grid-based numerical solution um,h is nat-
urally an accurate approximation of the exact one.
6. Computation of the volume and boundary integrals

Following Mayo’s approach [37], the volume integral v ¼ Gf occurring in the boundary integral equations
above is computed by solving the following interface problem with discontinuous inhomogeneous source
LvðpÞ ¼ ~f ðpÞ �
f ðpÞ in X

0 in Xc

(
; ð28aÞ

vþðpÞ ¼ v�ðpÞ on oX; ð28bÞ
n � rrvþðpÞ ¼ n � rrv�ðpÞ on oX; ð28cÞ
vðpÞ ¼ 0 on oB: ð28dÞ
The double layer potential/integral v ¼ Ku is computed by solving an interface problem,
LvðpÞ ¼ 0 in B n oX; ð29aÞ
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vþðpÞ ¼ v�ðpÞ þ uðpÞ on oX; ð29bÞ
n � rrvþðpÞ ¼ n � rrv�ðpÞ on oX; ð29cÞ
vðpÞ ¼ 0 on oB: ð29dÞ
The single layer potential/integral v ¼ �Nw is computed by solving another similar interface problem,
LvðpÞ ¼ 0 in B n oX; ð30aÞ
vþðpÞ ¼ v�ðpÞ on oX; ð30bÞ
n � rrvþðpÞ ¼ n � rrv�ðpÞ þ wðpÞ on oX; ð30cÞ
vðpÞ ¼ 0 on oB: ð30dÞ
The boundary integral K�w on the domain boundary oX is by definition computed as the normal flux of the
single layer potential/integral, i.e.,
K�w ¼ n � rrðNwÞ: ð31Þ

Note that the three interface problems above, (28)–(30), can be presented and solved in a unified framework.

In the rest of this paper, for simplicity, we only illustrate the KFBI method for solving the Dirichlet bound-
ary value problem. The extension of the method to solving the Neumann BVP is analogous.

As indicated by (18), the solution to the Dirichlet BVP described by Eqs. (2) and (3) is a sum of the solu-
tions to the interface problems (28) and (29). In other words, the Dirichlet BVP is equivalent to the following
interface problem:
LuðpÞ ¼ ~f ðpÞ in B n oX; ð32aÞ
uþðpÞ ¼ u�ðpÞ þ uðpÞ on oX; ð32bÞ
n � rruþðpÞ ¼ n � rru�ðpÞ on oX; ð32cÞ
uðpÞ ¼ 0 on oB; ð32dÞ
with u(p) the double layer potential density, defined by the boundary integral Eq. (19). Without confusion, we
still use the same symbol u(p) to denote the solution to the interface problem (32).

Suppose that an approximation to the double layer potential density u(p) is known as an intermediate
result of the simple iteration (22) or the GMRES iteration for the boundary integral equation (19) or (24).
Denote the approximate density by um ” um(p).

Given this density function um in place of u in (32b), the interface problem (32) is approximated by
LumðpÞ ¼ ~f ðpÞ in B n oX; ð33aÞ
uþm ðpÞ ¼ u�m ðpÞ þ umðpÞ on oX; ð33bÞ
n � rruþm ðpÞ ¼ n � rru�m ðpÞ on oX; ð33cÞ
umðpÞ ¼ 0 on oB; ð33dÞ
with um ” um(p) being an approximation of u(p), the solution of (32).
7. Spatial discretization on structured grids

To further solve the interface problem (33) numerically, assume that the regular domain B is partitioned
into a uniform structured grid. Assume the grid has N interior nodes fpig

N
i¼1. Denote the mesh parameter

of the grid by h.
On the uniform structured grid, the elliptic operator L can be discretized with a standard grid-based method,

such as the finite difference method, the finite element method or the finite volume method. Assume a kth-order
(k > 1) scheme is used to discretize the elliptic operator L. Denote the discrete elliptic operator by Lh.

If the discretization scheme is the finite difference method, the discrete elliptic operator Lh is explicitly avail-
able. For example, when the standard five-point stencil is used, the discrete elliptic operator Lh has the form
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Lh ¼ Ah=h2, where the finite difference stiffness matrix Ah is block tridiagonal with the natural ordering of grid
nodes and the non-zero entries of Ah are either 4 or �1. Typically the following approximation property holds
jLv� Lhvj1 � max
16i6N

jLvðpiÞ � LhvðpiÞj ¼ OðhkÞ ð34Þ
in the discrete maximum norm for v sufficiently smooth. However, if the discretization scheme is the finite ele-
ment method or the finite volume method, the expression for the discrete elliptic operator Lh may not be
explicitly available. In this case, we assume the Dirichlet BVP:
Lw ¼ f � in B; ð35aÞ
w ¼ 0 on oB; ð35bÞ
with f � 2 Hr�1ðBÞ (r > k > 1), is discretized by a kth-order (k > 1) finite element or finite volume method into
the linear system
Ahwh ¼Mhf�: ð36Þ

Here, Ah ” (ai,j)N·N is the finite element stiffness matrix; Mh ” (mi,j)N·N is the mass matrix and each entry of the
vector f* equals the value of the source f* at the corresponding grid node, i.e.,
ðf�Þi � f �ðpiÞ ¼ ðLwÞðpiÞ for i ¼ 1; 2; . . . ;N : ð37Þ

Let vh ” (v(p1),v(p2), . . . , v(pN))T be the vector with its ith entry equal to the value of v 2 H rþ1

0 ðBÞ at the ith
grid node pi. For simplicity, we assume, with the uniform grid, there exists an invertible diagonal matrix
Dh ” diag(di)N such that
max
16i6N

jLvðpiÞ � ðD�1
h AhvÞij ¼ OðhkÞ ð38Þ
for any v 2 H rþ1
0 ðBÞ in the discrete maximum norm.

Introducing the notation:
D�1
h AhvðpiÞ � ðD�1

h AhvhÞi for i ¼ 1; 2; . . . ;N ; ð39Þ
we could define the discrete elliptic operator Lh by
LhvðpiÞ � D�1
h AhvðpiÞ at grid node pi; i ¼ 1; 2; . . . ;N ; ð40Þ
for v 2 Hrþ1
0 ðBÞ. Here, the coefficient matrix in the right hand side of (40) is understood as an operator of grid

functions. Note that the assumption (38) indicates the approximation property of the discrete elliptic operator:
jLv� Lhvj1 � max
16i6N

jLvðpiÞ � LhvðpiÞj ¼ OðhkÞ ð41Þ
in the discrete maximum norm for v 2 H rþ1
0 ðBÞ.

In general, the stiffness matrix Ah = (ai,j)N·N is sparse, symmetric and negative definite. Each row in the
matrix Ah corresponds to an interior node on the grid. For the ith row in the matrix, which corresponds to
the ith grid node pi, we call the set of grid nodes
SðiÞ � fpjjai;j 6¼ 0g ð42Þ
as the discretization stencil of the discrete elliptic operator Lh at the grid node pi, and the corresponding index
set is denoted by
IðiÞ � fjjai;j 6¼ 0g: ð43Þ
A grid node pi is called irregular if there is a grid node pj 2 SðiÞ such that the line segment pjpi connecting pi

with pj intersects with the domain boundary oX. Note the line segment pjpi may intersect with the boundary
curve several times (see Fig. 2). Otherwise, the grid node pi is called regular. By the definition, a grid node may
be irregular even though all of the nodes in its discretization stencil are on the same side of the boundary (see
Fig. 2).
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Fig. 2. The grid nodes pi are irregular even though all of the nodes in the 9-point stencil are possibly on the same side of the boundary
curve.
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Suppose that the linear system resulting from discretizing the interface problem (33) with the kth-order dis-
cretization scheme is given by
Lh~um;hðpiÞ ¼ ~f ðpiÞ at grid nodes pi; i ¼ 1; 2; . . . ;N : ð44Þ

In principle, the discretization scheme for the interface problem (33) should essentially have kth-order accuracy if
the jumps across the domain boundary of the solution um, the flux n Æ r$um, the extended source term ~f all vanish
and additionally ~f is sufficiently smooth. However, the presence of discontinuities of the solution and the ex-
tended source term significantly degrade the accuracy of the solution ũm,h to the linear system (44) since
jLumðpiÞ � LhumðpiÞj � OðhkÞ ð45Þ

at irregular grid nodes pi. To recover the formal accuracy of the discretization scheme, the right hand side of the
linear system (44), which approximates the extended source term ~f ðpÞ, must be modified at irregular grid nodes.

Section 9 describes a correction formula Cm,h(p) for the source term in (44). The correction is made such that
LhumðpiÞ � LumðpiÞ ¼ Cm;hðpiÞ þOðhk�1Þ; ð46Þ

at irregular grid nodes pi. Define the corrected source term as a grid function by
~f m;hðpiÞ �

f ðpiÞ if pi is a regular point in X

f ðpiÞ þ Cm;hðpiÞ if pi is an irregular point in X

Cm;hðpiÞ if pi is an irregular point in Xc

0 if pi is a regular point in Xc

8>>>>><
>>>>>:

; ð47Þ
for i = 1, 2, . . . ,N. Finally, we obtain the following corrected linear system
Lhum;hðpiÞ ¼ ~f m;hðpiÞ at grid nodes pi; i ¼ 1; 2; . . . ;N : ð48Þ

or the symmetric and negative definite one
Ahum;hðpiÞ ¼ Dh
~f m;hðpiÞ at grid nodes pi; i ¼ 1; 2; . . . ;N : ð49Þ
Like (39), each side of (49) is understood as the ith entry of the corresponding matrix-vector product, or the
matrices Ah and Dh are treated as operators of grid functions. The diagonal matrix Dh is replaced by the iden-
tity matrix Ih if the discretization is based on the finite difference method.

As the stiffness matrix Ah is symmetric and negative definite and a hierarchy of structured grids exist based
upon the assumption on the regular domain B, the system (49) can be efficiently solved with standard geometric
multigrid iterations. In the case that the regular domain B is a rectangle and the elliptic operator is homogeneous
and isotropic, it may even be solved with the fast Fourier transform (FFT) based fast Poisson (Helmholtz)
solvers.
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8. Calculation of jumps of the partial derivatives

Suppose that the domain boundary oX is smooth enough (at least twice continuously differentiable). Let
tðsÞ � ð _xðsÞ; _yðsÞÞT be the unit tangential vector along the boundary. Here, s is the arc-length parameter. The
outward normal n is given by nðsÞ ¼ ð _yðsÞ;� _xðsÞÞT.

We present the calculation of jumps across oX of the derivatives of the solution (u ” u(p)) to the Dirichlet or
Neumann BVP in a unified framework. Assume that
LuðpÞ ¼ ~f ðpÞ in B; ð50aÞ
½u� ¼ u on oX; ð50bÞ
½n � rru� ¼ w on oX; ð50cÞ
uðpÞ ¼ 0 on oB: ð50dÞ
For the Dirichlet BVP, the flux of the double layer potential is continuous across oX, i.e., w = 0. For the Neu-
mann BVP, the single layer potential is continuous across oX, i.e., u = 0.

Assume the (symmetric) diffusion tensor r in L has the form
r ¼
r11 r12

r12 r22

� �
: ð51Þ
Writing out the jump (50c) of the normal flux n Æ r$u gives us
ð _yr11 � _xr12Þ½ux� þ ð _yr12 � _xr22Þ½uy � ¼ w: ð52Þ

Differentiating (50b) in the tangential direction t, we see that
½ut� ¼ _x½ux� þ _y½uy � ¼ ut: ð53Þ

The determinant of the two by two system (52) and (53) is equal to
D2 � r11 _y2 þ r22 _x2 � 2r12 _x _y ¼ _y � _xð ÞT
r11 r12

r12 r22

� �
_y

� _x

� �
; ð54Þ
which is always positive, uniformly bounded by a positive constant from below. So, the jumps [ux] and [uy]
of the first-order derivatives can be solved from (52) and (53).

To compute the jumps ([uxx], [uxy] and [uyy]) of the second-order derivatives of u, we differentiate (52) and
(53) in the tangential direction and obtain
ð _yr11 � _xr12Þ _x½uxx� þ ð _y2r11 � _x2r22Þ½uxy � þ ð _yr12 � _xr22Þ _y½uyy � ¼ r0; ð55aÞ
_x2½uxx� þ 2 _x _y½uxy � þ _y2½uyy � ¼ r1; ð55bÞ
with
r0 � wt �
dð _yr11 � _xr12Þ

ds
½ux� �

dð _yr12 � _xr22Þ
ds

½uy �;

r1 � uttðxÞ � €x½ux� � €y½uy �:
ð56Þ
In addition, denote by q the jump of the extended source ~f in (50a), i.e.,
½Lu� ¼ q on oX: ð57Þ

Writing out (57) explicitly gives us
r11½uxx� þ 2r12½uxy � þ r22½uyy � ¼ r2; ð58Þ

with
r2 � qþ j½u� � ðr11;x þ r12;yÞ½ux� � ðr12;x þ r22;yÞ½uy �:

The determinant of the coefficient matrix in the three by three system (55)–(57) is equal to



1058 W. Ying, C.S. Henriquez / Journal of Computational Physics 227 (2007) 1046–1074
D3 � D2
2 ¼ ðr11 _y2 þ r22 _x2 � 2r12 _x _yÞ2; ð59Þ
which is uniformly bounded by a positive constant from below too. So, the jumps ([uxx], [uxy] and [uyy]) of the
second-order derivatives of u can be uniquely solved from the three by three system (55)–(57).

We could similarly evaluate discontinuities in the third-order derivatives of u(p). There are four such deriv-
atives, [uxxx], [uyyy], [uxxy] and [uxyy]. To determine the discontinuities in these derivatives we differentiate Eqs.
(55) in the tangential direction t and differentiate (57) in both the normal and tangential directions. This
method can be used to compute discontinuities in higher-order derivatives.

For the solution um to the approximate interface problem (33), the jumps of its derivatives,
oum

ox

� �
;

oum

oy

� �
;

o2um

ox2

� �
;

o2um

oxoy

� �
and

o2um

oy2

� �
; ð60Þ
can be calculated exactly in the same way as above.

9. Derivation of the correction formula

We focus on the correction of the linear systems discretized by the standard continuous second-order
(k = 2) finite element method since it can easily handle Dirichlet and Neumann boundary conditions associ-
ated with the general (possibly anisotropic) elliptic operator L. Computation of the correction formula for
those resulting from discretization with finite difference or finite volume method is similar.

With the continuous piecewise linear (or bilinear) finite elements, the diagonal matrix Dh in (38) is obtained
through the technique of mass lumping [64–68] for the mass matrix Mh on the right hand side of the finite
element system (36). The assumption (38) results from the numerical integration with grid nodes being the
quadrature points.

As indicated by (46), the correction to the right hand side of the system (44) at irregular grid nodes pi is
computed such that
Cm;hðpiÞ ¼ LhumðpiÞ � LumðpiÞ þOðhÞ ¼ D�1
h AhumðpiÞ � LumðpiÞ þOðhÞ

¼ 1

di

X
j2IðiÞ

ai;jumðpjÞ � LumðpiÞ þOðhÞ: ð61Þ
First, for each grid node pi, we define the truncated Taylor expansion of um(p) around pi by
U m;iðpÞ �
X2

n¼0

1

n!

o
numðpiÞ
ozn

jp� pij
n þOðjp� pij

3Þ ð62Þ
with the unit direction
z � p� pi

jp� pij
ð63Þ
for p 6¼ pi. By the approximation property (41), we have
LumðpiÞ �
1

di

X
j2IðiÞ

ai;jU m;iðpjÞ ¼ LU m;iðpiÞ �
1

di

X
j2IðiÞ

ai;jU m;iðpjÞ ¼ Oðh2Þ: ð64Þ
By replacing LumðpiÞ in (61) with the weighted sum of the values of the truncated Taylor expansion Um,i(p) at
grid nodes in the stencil, we could compute the correction formula using
Cm;h ¼
1

di

X
j2IðiÞ

ai;jðumðpjÞ � U m;iðpjÞÞ þOðhÞ: ð65Þ
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Fig. 3. The node pi is irregular as the line segment connecting nodes pi and pj intersects with the boundary curve. The right hand side of the
discrete linear system must be appropriately corrected at the irregular grid node. When the line segment intersects with the boundary curve
several times, a multiplicative manipulation of the jumps is involved.
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Notice that, with the second-order finite element method, the entries di of the diagonal matrix Dh are on the
order of h2. It is necessary and sufficient to compute the difference um(pj) � Um,i(pj) in (65) up to the third-order
accuracy.

In the case that the line segment connecting the grid nodes pi and pj does not come across the domain
boundary oX, the difference between um(pj) and Um,i(pj) has already been on the order of h3. In the correction
formula (65), it is simply replaced by zero.

In the case that the line segment pjpi intersects with the domain boundary only once at a point q (see
Fig. 3a), if the node pi is in the complementary domain Xc and the node pj is in the interior of the domain
X, the difference between um(pj) and Um,i(pj) is computed as the difference of their Taylor expansions around
q, i.e.,
umðpjÞ � U m;iðpjÞ ¼
X2

n¼0

1

n!

onuþm ðqÞ
ozn

� onU m;iðqÞ
ozn

� �
jpj � qjn þOðh3Þ

¼
X2

n¼0

1

n!

onumðqÞ
ozn

� �
jpj � qjn þOðh3Þ; ð66Þ
if the node pi is in the interior of the domain X and the node pj is in the complementary domain Xc, the dif-
ference is computed by
umðpjÞ � U m;iðpjÞ ¼
X2

n¼0

1

n!

onu�m ðqÞ
ozn

� onU m;iðqÞ
ozn

� �
jpj � qjn þOðh3Þ

¼ �
X2

n¼0

1

n!

o
numðqÞ
ozn

� �
jpj � qjn þOðh3Þ: ð67Þ
When the line segment pjpi intersects with the domain boundary several times, the difference um(pj) � Um,i(pj)
can be similarly computed but the procedure is more complicated because a multiplicative manipulation of the
jumps will be involved each time when the line segment pjpi comes across the domain boundary oX. Here, we
only give the formula corresponding to the cases when the number of intersected points is two (see Fig. 3b): if
both of the endpoints of the line segment pjpi are in the interior of the domain X,
umðpjÞ � U m;iðpjÞ ¼ �
X2

n¼0

X2�n

m¼0

1

n!m!

onþmumðqÞ
oznþm

� �
jq1 � q2j

m

( )
jpj � q1j

n þ
X2

n¼0

1

n!

onumðqÞ
ozn

� �
jpj � q1j

n

þOðh3Þ; ð68Þ
if both of the endpoints are in the exterior of the domain X,
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umðpjÞ � U m;iðpjÞ ¼
X2

n¼0

X2�n

m¼0

1

n!m!

onþmumðqÞ
oznþm

� �
jq1 � q2j

m

( )
jpj � q1j

n �
X2

n¼0

1

n!

onumðqÞ
ozn

� �
jpj � q1j

n þOðh3Þ:

ð69Þ

Finally, the jumps of the directional derivatives (n = 1, 2),
o
numðqÞ
ozn

� �
;

are calculated in terms of the known jumps of partial derivatives,
oumðqÞ
ox

� �
;

oumðqÞ
oy

� �
; ð70Þ
and
o2umðqÞ
ox2

� �
;

o2umðqÞ
oxoy

� �
;

o2umðqÞ
oy2

� �
: ð71Þ
For piecewise constant coefficient elliptic equations, recently Beale and Layton [69] proved that, with the cor-
rection formula computed as above for the standard five-point finite difference scheme, the solution to the cor-
rected linear system (49) is second-order accurate in the discrete maximum norm,
jum;h � umj1 ¼ Oðh2Þ: ð72Þ

For the general elliptic operator L with possible anisotropy and inhomogeneity, a factor of logh will enter into
the pointwise error estimate, which is stated in the following theorem.

Theorem 6. Assume that the number of irregular grid nodes is on the order of hN. The numerical solution um,h to

the corrected linear system (49) for the general elliptic BVP is essentially second-order in accuracy, i.e.,
jum;h � umj1 � max
16i6N

jum;hðpiÞ � umðpiÞj ¼ Oðh2j log hjÞ: ð73Þ
It can be shown that the pointwise error estimate (73) is true with either the finite difference method or the
finite element method. In the next, we only prove it for the finite element method case.

We first need to introduce two lemmas related to discrete Green’s functions [70]. Let Sh � H 1
0ðBÞ be the

standard finite element space consisting of continuous functions that are linear (bilinear) on each of the ele-
ments of T h and vanish outside T h. For a fixed grid node pi, let cji

be a point in the interior of an element,
which is adjacent to pi. Define a discrete Green’s function gji

by
ðLgji
; vÞ ¼ vðcji

Þ 8v 2 Sh: ð74Þ
The partial derivatives gji;x
and gji ;y

in the distributional sense of the discrete Green’s function gji
satisfy:
ðLgji;x
; vÞ ¼ ovðcji

Þ
ox

8v 2 Sh; ð75Þ
and
ðLgji;y
; vÞ ¼ ovðcji

Þ
oy

8v 2 Sh; ð76Þ
respectively.

Lemma 7
kgji;x
kL2 6 Cj log hj1=2 and kgji ;y

kL2 6 Cj log hj1=2
: ð77Þ
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Proof. We will prove the inequalities by a duality argument. For arbitrarily chosen u 2 L2ðBÞ, let w be the
solution of the following BVP
Lw ¼ u in B; ð78aÞ
w ¼ 0 on oB: ð78bÞ
We have
ðgji ;x
;uÞ ¼ ðLgji ;x

;wÞ ¼ ðLgji;x
;RhwÞ ¼

oRhw
ox

: ð79Þ
Here, Rh:H2! Sh is the elliptic projection. It is proved by Rannacher and Scott [71] first for the Laplacian
operator and later extended for the general elliptic operators (refer to Brenner and Scott [72]) that Rh is
bounded in the Sobolev space W 1;p

0 , uniformly in p for p > 2.
jðgji;x
;uÞj 6 kRhwkW 1;1

0
6 Ch�2=pkRhwkW 1;p

0
6 Ch�2=pkwkW 1;p

0
: ð80Þ
Furthermore, the Sobolev inequality
kvkLp 6 C
ffiffiffi
p
p kvkH1 ; p > 2; ð81Þ
and the elliptic regularity estimate
kwkW 1;p
0
6 C

ffiffiffi
p
p kwkH2 6 C

ffiffiffi
p
p kukL2 ; ð82Þ
indicate
jðgji;x
;uÞj 6 Ch�2=p ffiffiffi

p
p kukL2 : ð83Þ
Letting p = |logh|, we obtain
jðgji;x
;uÞj 6 Cj log hj1=2kukL2 8u 2 L2ðBÞ; ð84Þ
and hence the first inequality in the lemma. The proof for the second inequality is similar. h

The following lemma in the finite difference case is some form of the results by Bramble and Thomée [73].
Here, we prove that the maximum norm estimate for the discrete Green’s function is also true with the finite
element method.

Lemma 8
jgji
jL1 6 Cj log hj: ð85Þ
Proof. By the Sobolev embedding inequality, for p > 2, H 1ðBÞ,!LpðBÞ,
kvkLp 6 C
ffiffiffi
p
p kvkH1 8v 2 Sh: ð86Þ
By the inverse estimate in the finite element space Sh,
kvkL1 6 Ch�2=pkvkLp : ð87Þ
So,
kvkL1 6 Ch�2=p ffiffiffi
p
p kvkH1 6 Ch�2=p ffiffiffi

p
p jvjH1

0
: ð88Þ
Let p = |logh|. We have
kvkL1 6 Cj log hj1=2 ov
ox

����
����

L2

þ ov
oy

����
����

L2

� �
: ð89Þ
Finally, plugging v ¼ gji
into (89), we obtain
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jgji
jL1 6 Cj log hj1=2ðkgji ;x

kL2 þ kgji ;y
kL2Þ 6 Cj log hj: � ð90Þ
As cji
! pi, in the limit of (85), we have

Lemma 9.
jgijL1 6 Cj log hj; ð91Þ

for the discrete Green’s function gi given by
ðLgi; vÞ ¼ vðpiÞ 8v 2 Sh: ð92Þ

Let gi be the vector with its components equal to the nodal values of the discrete Green’s function gi in Lemma
9. Let ei = (0, . . . , 0, 1, 0, . . . , 0)T be the unit vector with only the ith entry equal to one and all others vanishing.
Then the vector gi is the solution to the linear system
Ahgi ¼ ei; ð93Þ

and also satisfies the estimate
jgij1 � max
16j6N

jgiðpjÞj 6 Cj log hj ð94Þ
in the discrete maximum norm.
Now we are ready to prove Theorem 6.

Proof Theorem6. Assume that
D�1
h Ahðum;hðpiÞ � umðpiÞÞ ¼ Ei; ð95Þ
for i = 1, 2, . . . ,N, with Ei = O(h2) if pi is a regular grid node and Ei = O(h) if pi is irregular. Let
J � � fi : pi is irregular grid node:g ð96Þ

be the set of indices of irregular grid nodes. By the assumption that the number of irregular grid nodes is on
the order of hN, we have jJ �j ¼ C0Nh for some C0 > 0. Let Eh ” (E1,E2, . . . ,EN)T. From error Eq. (95), we get
um;hðpiÞ � umðpiÞ ¼ ðA�1
h DhEhÞi: ð97Þ
For simplicity, assume that each entry in the diagonal of the matrix Dh is equal to h2. Let E� � maxj2J � jEjj ¼
C1h and E�� � maxj 62J � jEjj ¼ C2h2. From (97), we could further obtain
jum;hðpiÞ � umðpiÞj 6 h2
XN

j¼1

jgi;jEjj 6 h2
X
j2J �
jgi;jjE� þ

X
j 62J �
jgi;jjE��

( )
6 h2 C1h

X
j2J �
jgi;jj þ C2h2

X
j 62J �
jgi;jj

( )

6 h2fC1hjJ �j þ C2h2Ngjgij1 6 CðC0C1 þ C2ÞNh4j log hj ¼ Oðh2j log hjÞ: �
10. Interpolation of the volume and boundary integrals

As in general the Green’s function G(p;q) of the elliptic operator L in the regular domain B is not analyt-
ically available, we replace step (22a) (or (23a) for Neumann BVPs) with the corrected linear system (49). That
is, given the approximate jump lm(p), we could first compute the corrections Cm,h, next solve the linear system
(49) and denote the approximate solution by um,h(p). Then we extract the limit values of uþm;hðpÞ (from inside) (or
its flux for Neumann BVPs) using Taylor expansions of the approximate solution um,h around the discretiza-
tion nodes of the boundary curve (see Fig. 4).

We treat the approximate solution um,h(p) as a piecewise smooth function even though only the values of the
function at the grid nodes are known. Assume the function and its derivatives are possibly discontinuous only
on the domain boundary oX. We also assume that the approximate solution um,h(p) is smooth enough in B n oX
such that the action of the continuous operator L on it is meaningful.

Taylor expansion of the approximate solution um,h(p) around a point q on the domain boundary oX (see
Fig. 4) gives us



a b

Fig. 4. Six grid nodes pj (j = 0, 1, . . . , 5) for computing the limit values of an approximate solution and its derivatives at point q.
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um;hðpÞ ¼ uþm;hðqÞ þ
ouþm;hðqÞ

ox
nþ

ouþm;hðqÞ
oy

gþ 1

2

o
2uþm;hðqÞ
ox2

n2 þ
o

2uþm;hðqÞ
oxoy

ngþ 1

2

o
2uþm;hðqÞ
oy2

g2 þOðjp� qj3Þ

if p 2 X; ð99Þ
and
um;hðpÞ ¼ u�m;hðqÞ þ
ou�m;hðqÞ

ox
nþ

ou�m;hðqÞ
oy

gþ 1

2

o
2u�m;hðqÞ
ox2

n2 þ
o

2u�m;hðqÞ
oxoy

ngþ 1

2

o
2u�m;hðqÞ
oy2

g2 þOðjp� qj3Þ

if p 2 Xc; ð100Þ
Here, (n,g)T ” p � q. For conciseness, we denote the limit values of the approximate solution um,h and its deriv-
atives by
V 	 � u	m;hðqÞ; V 	x �
ou	m;hðqÞ

ox
; V 	y �

ou	m;hðqÞ
oy

; ð101Þ
and
V 	xx �
o2u	m;hðqÞ

ox2
; V 	xy �

o2u	m;hðqÞ
oxoy

; V 	yy �
o2u	m;hðqÞ

oy2
: ð102Þ
Some subscripts are omitted.
Evaluating the truncated Taylor series, (99) or (100), at six nearby grid nodes pj (j = 0, 1, . . . , 5) (see Fig. 4)

yields
V þ þ V þx nj þ V þy gj þ
1

2
n2

j V þxx þ njgjV
þ
xy þ

1

2
g2

j V þyy ¼ V j if pj 2 X ð103Þ
and
V � þ V �x nj þ V �y gj þ
1

2
n2

j V �xx þ njgjV
�
xy þ

1

2
g2

j V �yy ¼ V j if pj 2 Xc; ð104Þ
with Vj ” um,h(pj) and (nj,gj)
T ” pj � q, for j = 0, 1, . . . , 5. Let
J j � ½V � þ nj½V x� þ gj½V y � þ
1

2
n2

j ½V xx� þ njgj½V xy � þ
1

2
g2

j ½V yy �: ð105Þ
Using the jump relations of the solution and its derivatives, we rewrite (104) as
V þ þ V þx nj þ V þy gj þ
1

2
n2

j V þxx þ njgjV
þ
xy þ

1

2
g2

j V þyy ¼ V j þ J j if pj 2 Xc: ð106Þ
Let aj ” nj/h, bj ” gj/h and introduce new quantities:
W 	 � V 	; W 	
a � hV 	x ; W 	

b � hV 	y ; ð107Þ
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and
W 	
aa � h2V 	xx; W 	

ab � h2V 	xy ; W 	
bb � h2V 	yy : ð108Þ
Then from Eqs. (103) and (106), we obtain
W þ þ ajW þ
a þ bjW þ

b þ
1

2
a2

j W þ
aa þ ajbjW þ

ab þ
1

2
b2

j W þ
bb ¼ V j if pj 2 X ð109Þ
or
W þ þ ajW þ
a þ bjW þ

b þ
1

2
a2

j W þ
aa þ ajbjW þ

ab þ
1

2
b2

j W þ
bb ¼ V j þ J j if pj 2 Xc ð110Þ
for j = 0, 1, . . . , 5. Note that the coefficient matrix of (109) and (110) is independent of the mesh parameter h.
The limit values of the approximate solution and its derivatives are uniquely determined by (109) and (110)
if we appropriately choose the six grid nodes pj (j = 0, 1, . . . , 5) such that the coefficient matrix is invertible.

In the case that the structured grid consists of rectangular or quadrilateral elements, we chose an interpo-
lation stencil as the nearest six grid nodes, which looks like a fish but never being a two by three rectangle, and
four of which are the vertices of the element that contains the curve node q in its interior (see Fig. 4a). In the
case that the structured grid consists of triangular elements, we choose the six grid nodes such that the stencil
forms a triangle, which contains in its interior the curve node q of interest on the boundary curve (see Fig. 4b).
With interpolation nodes chosen as above, the matrix is always invertible and the polynomial interpolation
scheme is guaranteed to be stable ([26,74]).

11. Numerical results

Numerical results from application of the kernel free boundary integral method to solving BVPs with either
Neumann or Dirichlet boundary conditions are presented in this section.

To study the convergence rate and efficiency of the KFBI method, in the numerical simulations for each test
problem, the boundary curve oX and the regular domain B, into which the original complex domain X is
embedded, are simultaneously refined with a refinement ratio of two.

In the numerical experiments reported in this section, the GMRES iterative method is used to solve the
boundary integral equations. For Dirichlet BVPs, the unknown density is initialized as u0 = 2gD; for Neu-
mann BVPs, the unknown density is initialized as w0 = 2gN. The GMRES iteration stops only when the rel-
ative residual in a scaled discrete l2-norm is less than a small tolerance, i.e.,
k�gD
h � Kum;hk2

k�gD
h k2

< �tol ð111Þ
for the boundary integral Eq. (24) corresponding to the Dirichlet BVPs and
k�gN
h � K�wm;hk2

k�gN
h k2

< �tol ð112Þ
for the boundary integral Eq. (26) corresponding to the Neumann BVPs. In the simulations presented, the
tolerance is fixed to be
�tol � 10�6: ð113Þ

The scaled discrete l2-norm of a vector v ¼ ðv1; v2; . . . ; vnÞT 2 Rn is defined by
kvk2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

v2
i

s
: ð114Þ
In the first three test problems, the regular domain B is chosen to be the rectangular box B ¼ ð�1; 1Þ2 and
the diffusion tensor and the reaction coefficient of the elliptic operator are assumed to be isotropic and
homogeneous. That is, we first consider solving the constant coefficients BVPs on complex domains (see



Table 1
Results from solving the interior Dirichlet BVP on the star-shaped domain (Example 1)

MoX Grid size r = 1, j = 0 r = 1,j = 1

iehi2 iehi1 m iehi2 iehi1 m

64 64 · 64 6.74E�5 7.89E�4 11 7.03E�5 8.48E�4 11
128 128 · 128 5.37E�6 8.64E�5 11 6.13E�6 8.88E�5 11
256 256 · 256 6.52E�7 1.54E�5 11 1.00E�6 1.54E�5 11
512 512 · 512 6.87E�8 4.38E�E�6 11 1.83E�7 5.48E�6 11
1024 1024 · 1024 1.05E�8 4.08E�7 11 4.16E�8 7.21E�7 11

Table 2
Results from solving the interior Neumann BVP on the heart-shaped domain (Example 2)

MoX Grid size r = 1, j = 0 r = 1, j = 1

iehi2 iehi1 m iehi2 iehi1 m

56 64 · 64 3.35E�4 1.30E�3 12 3.23E�4 1.40E�3 10
112 128 · 128 1.21E�4 5.04E�4 13 1.15E�4 4.08E�4 10
224 256 · 256 1.74E�5 8.97E�5 13 2.05E�E�5 6.66E�5 10
448 512 · 512 1.82E�6 1.53E�5 14 6.76E�6 1.65E�5 10
896 1024 · 1024 2.68E�7 4.35E�6 14 8.82E�7 3.04E�6 10

Fig. 5. Numerical solution to the interior Dirichlet boundary value problem on the star-shaped domain with a 128 · 128 grid (Example 1,
j = 0). In these two plots, the same iso-values and colormaps are used to visualize the interior and exterior data: maximum interior value
of the solution ui

max ¼ 0:369, minimum interior value of the solution ui
min ¼ �0:369, maximum exterior value of the solution ue

max ¼ 0:383,
minimum exterior value of the solution ue

min ¼ �0:383.

W. Ying, C.S. Henriquez / Journal of Computational Physics 227 (2007) 1046–1074 1065
Fig. 1). In these cases, the elliptic operator L degenerates to be the Laplacian operator (j = 0) or the general-
ized Helmholtz operator (j > 0). The corresponding interface problems on Cartesian grids are simply discret-
ized by the five-point central finite difference scheme and solved with a FFT-based Poisson (Helmholtz)
solver.

Numerical results for the first two test problems are summarized in Tables 1 and 2 and Figs. 5 and 6. In
each of the tables, the first column contains the numbers of nodes on oX, denoted by MoX, which are used
to discretize the boundary curves. The second column contains the sizes of the Cartesian grids used to solve
the interface problems. The other columns are respectively the errors of the data in the scaled discrete ‘2-norm
(iehi2) and the maximum norm (iehi1) and the number of GMRES iterations (m). In the tables, the number of
GMRES iterations is also the times the FFT-based fast Poisson (Helmholtz) solver is called during the
simulation.

Example 1 (An interior Dirichlet BVP on a star-shaped domain). The boundary curve of the star-shaped
domain is defined by



Fig. 6. Numerical solution to the interior Neumann boundary value problem on the heart-shaped domain with a 128 · 128 grid (Example
2, j = 0). In these two plots, as the solution to the Neumann BVP is continuous across the domain boundary and both of the interior and
exterior solutions achieve their maximum and minimum values on the boundary, the same iso-values and colormaps are used to visualize
the data: maximum interior value of the solution ui

max ¼ 0:574, minimum interior value of the solution ui
min ¼ �0:519, maximum exterior

value of the solution ue
max ¼ 0:564, minimum exterior value of the solution ue

min ¼ �0:514.
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xðhÞ ¼ 0:6ð1þ 0:25 sin 6hÞ cos h; ð115Þ
yðhÞ ¼ 0:6ð1þ 0:25 sin 6hÞ sin h; ð116Þ
for h 2 [0, 2p), which is completely contained in the rectangular box B ¼ ð�1; 1Þ2. The Dirichlet boundary con-
ditions on oX are chosen such that the exact solution to the problem is given by
uðx; yÞ ¼ x3 � y3: ð117Þ

The boundary conditions on oB are simply set as zero. See Table 1 for the errors and Fig. 5 for the numerical
solution on a 128 · 128 grid.

Example 2 (An interior Neumann BVP on a heart-shaped domain). The boundary curve oX is fitted with a
cubic spline. Pure Neumann boundary conditions are applied on oX such that the exact solution is given by
uðx; yÞ ¼ sin
px
2

sin
py
2
: ð118Þ
The boundary conditions on oB are simply set as zero. In the case that the reaction coefficient vanishes (j = 0),
the solution to the pure Neumann BVP is not unique but only up to an additive constant. To compute numer-
ical errors, we translate the solution to the corresponding interface problem by a constant such that the
numerical solution matches the exact one at the center of the box B. See Table 2 for the errors and Fig. 6
for the numerical solution on a 128 · 128 grid.

The numerical results presented in Tables 1 and 2 uniformly verify that the Cartesian grid method proposed
is of second-order accurate. The number of GMRES iterations used for the boundary integral equations is
independent of the grid size, which is in contrast to Wiegmann and Bube’s explicit jump II method and Li
and Ito’s augmented strategies for constant coefficient BVPs.

In our experiments, simple iterations like (22) and (23) have also been correspondingly applied to solve the
integral equations for Examples 1 and 2 with the same uniform grids of different sizes. We chose the iteration
parameter b to be equal to 0.8 and used the same stopping criteria and tolerance as the GMRES iteration. It is
observed that, for the interior Dirichlet BVP in Example 1, the iteration number used by the simple iteration
(22) is 19 on the coarsest 64 · 64 grid and always 17 on others, more than those used by the GMRES method.
For the interior Neumann BVP with non-vanishing reaction coefficient (j = 1) in Example 2, the iteration
number used by the simple iteration (23) is 46 on the coarsest 64 · 64 grid and always 47 on others. For
the interior Neumann BVP with vanishing reaction coefficient (j = 0) in Example 2, during each iteration,
the iterated density is modified such that it has zero mean value, which guarantees the simple iteration con-



Fig. 7. The numerical solutions to the BVPs on the complements of complex domains with 128 · 128 grids (Example 3). Homogeneous
Neumann boundary conditions are provided on the boundary of the complex domains. Dirichlet boundary conditions are provided on the
boundary of the rectangular box. In the simulations with different grid sizes ranging from 64 · 64 to 1024 · 1024, it is observed that the
iteration numbers used by the GMRES method for the problem on the mushroom-shaped domain are straightly 24 while those on the spiral-
shaped domain fluctuate between 35 and 36. In these figures, the interior and exterior data use the same isovalues and colormaps.

W. Ying, C.S. Henriquez / Journal of Computational Physics 227 (2007) 1046–1074 1067
verges for the singular integral equation; the iteration number used by the simple iteration is 26 on the coarsest
64 · 64 grid and always 27 on other grids.

Example 3 (A Neumann BVP on the complements of complex domains). In this example, we solve the Laplace’s
equation with homogeneous Neumann boundary conditions on the boundaries oX of two different complex
domains (a mushroom-shaped domain and a spiral-shaped domain) (see Fig. 7) and Dirichlet boundary
conditions on the boundary oB of the rectangular box, which say
gDðx; yÞ ¼ x on oB: ð119Þ
We run simulations with five grids of different resolutions ranging from 64 · 64 to 1024 · 1024 as before. It is
observed that the iteration numbers used by the GMRES method for the problem on the mushroom-shaped
domain are always 24 while those on the spiral-shaped domain fluctuate between 35 and 36.

In the next two examples, we use the standard continuous piecewise bilinear finite element method to solve
the interior Dirichlet/Neumann boundary value problems. Both isotropic and anisotropic BVPs are tested. In
the anisotropic case, for simplicity, we assume the diffusion tensor is spatially uniform and has the form
r ¼
cos h � sin h

sin h cos h

� �
k1

k2

� �
cos h sin h

� sin h cos h

� �
; ð120Þ
with k1 = 1, k2 = 1/l and h = p/4. Here, l > 1 is the anisotropy ratio of the diffusion tensor. It ranges from
two to a hundred. The larger regular domain B is still chosen to be the square rectangular box as above,
i.e., B ¼ ð�1; 1Þ2. The box is partitioned into a hierarchy of Cartesian grids. The resulting linear systems



Table 4
More results from solving the anisotropic Dirichlet BVP on the circular domain (Example 4, the diffusion tensor is aligned with the
diagonal of the domain)

j = 0 Anisotropy ratio 8:1 Anisotropy ratio 20:1

MoX Grid size iehi2 iehi1 m iehi2 iehi1 m

30 64 · 64 9.07E�5 7.24E�4 7 4.64E�E�4 5.36E�3 8
60 128 · 128 1.62E�5 1.67E�4 7 1.25E�4 1.85E�3 9
120 256 · 256 4.02E�6 4.82E�5 7 3.25E�5 5.37E�4 8
240 512 · 512 1.18E�6 1.62E�5 7 9.35E�6 1.97E�4 8
480 1024 · 1024 2.88E�7 3.88E�6 7 2.34E�6 5.17E�5 8

Table 5
Results from solving the interior anisotropic Neumann BVP on the ellipse-shaped domain (Example 5, the diffusion tensor is aligned with
the diagonals of the domain)

j = 0 Isotropic Anisotropy ratio 3:1

MoX Grid size iehi2 iehi1 m iehi2 iehi1 m

30 64 · 64 2.13E�4 7.37E�4 5 6.03E�4 4.19E�3 10
60 128 · 128 2.72E�5 1.88E�4 5 3.89E�5 5.12E�4 10
120 256 · 256 8.30E�6 3.85E�5 5 1.02E�5 9.69E�5 11
240 512 · 512 2.10E�6 7.85E�6 5 3.10E�6 3.55E�5 8
480 1024 · 1024 4.77E�7 1.72E�6 5 4.79E�7 4.32E�6 11

j = 1
30 64 · 64 2.11E�4 7.37E�4 5 7.73E�4 2.96E�3 8
60 128 · 128 2.70E�5 1.90E�4 5 2.96E�4 6.58E�4 7
120 256 · 256 8.42E�6 3.89E�5 5 5.26E�5 1.92E�4 8
240 512 · 512 2.14E�6 7.98E�6 5 9.17E�6 4.14E�5 8
480 1024 · 1024 4.83E�7 1.75E�6 4 1.72E�6 3.51E�6 8

Table 3
Results from solving the interior anisotropic Dirichlet BVP on the circular domain (Example 4, the diffusion tensor is aligned with the
diagonals of the domain)

j = 0 Isotropic Anisotropy ratio 3:1

MoX Grid size iehi2 iehi1 m iehi2 iehi1 m

30 64 · 64 5.06E�5 4.13E�4 6 3.16E�5 2.43E�4 6
60 128 · 128 1.65E�5 1.04E�4 6 1.03E�5 8.86E�5 6
120 256 · 256 2.52E�6 3.20E�5 6 1.89E�6 1.74E�5 6
240 512 · 512 8.17E�7 6.77E�6 5 5.43E�7 5.05E�6 6
480 1024 · 1024 2.13E�7 2.14E�6 5 1.36E�7 1.29E�6 6
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are solved by a geometric multigrid solver (exactly, an implementation based on V-cycle preconditioned con-
jugate gradient iterations). In these simulations, we used the technique of mass lumping (row-sum) to assembly
the mass matrices involved.

Numerical results for the test problems are summarized in Tables 3–7 and Figs. 8 and 9. In each of the
tables, the first column contains the numbers of nodes on oX, denoted by MoX, which are used to discretize
the boundary curves. The second column contains the sizes of the Cartesian grids used to solve the interface
problems. The other columns are respectively the errors of the data in the scaled discrete ‘2-norm (iehi2) and
the maximum norm (iehi1) and the number of GMRES iterations (m). In the tables, the number of GMRES
iterations is also the times the geometric multigrid solver is called during the simulation.

Example 4 (An interior Dirichlet BVP on a circular domain). The circular domain X is defined by



Table 6
Results from solving the pure Neumann BVP on the ellipse-shaped domain (Example 5, j = 0 and the diffusion tensor is aligned with the
diagonals of the domain)

j = 0 Anisotropy ratio 8:1 Anisotropy ratio 20:1

MoX Grid size iehi2 iehi1 m iehi2 iehi1 m

30 64 · 64 6.18E�4 6.39E�3 10 1.71E�3 2.28E�2 11
60 128 · 128 1.57E�4 1.80E�3 11 1.11E�3 2.19E�2 13
120 256 · 256 3.86E�5 3.17E�4 13 1.81E�4 3.36E�3 16
240 512 · 512 2.56E�5 5.11E�4 13 2.62E�5 7.95E�4 16
480 1024 · 1024 4.15E�6 5.37E�5 14 6.90E�6 3.18E�4 18

Table 7
Results from solving the reaction-diffusion Neumann BVP on the ellipse-shaped domain (Example 5, j = 1 and the diffusion tensor is
aligned with the diagonals of the domain)

j = 1 Anisotropy ratio 8:1 Anisotropy ratio 20:1

MoX Grid size iehi2 iehi1 m iehi2 iehi1 m

30 64 · 64 1.66E�3 7.46E�3 9 4.23E�3 1.84E�2 9
60 128 · 128 4.88E�4 2.01E�3 8 1.49E�3 1.00E�2 11
120 256 · 256 4.01E�5 3.05E�4 9 3.96E�4 2.28E�3 11
240 512 · 512 4.97E�5 2.13E�4 9 1.59E�4 1.16E�3 10
480 1024 · 1024 5.97E�6 3.61E�5 9 1.18E�5 1.62E�4 10

Fig. 8. Numerical solutions to the interior Dirichlet boundary value problem (Example 4) with the finite element method on a 128 · 128
grid: (a) the diffusion tensor is isotropic (r = 1); (b) the diffusion tensor is anisotropic with anisotropy ratio 3:1, the principle eigenvector
aligned with the positive diagonal of the box B.
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Fig. 9. Numerical solutions to the interior Neumann boundary value problem (Example 5, j = 1) with the finite element method on a
128 · 128 grid: (a) the diffusion tensor is isotropic (r = 1); (b) the diffusion tensor is anisotropic with anisotropy ratio 3:1, the principle
eigenvector aligned with the positive diagonal of the box B.
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ðx; yÞT
�� x2

0:62
þ y2

0:62
< 1

	 

: ð121Þ
The reaction coefficient in the elliptic operator is fixed to be zero, i.e., j = 0. Pure Dirichlet boundary condi-
tions are applied on oX such that the exact solution is given by
uðx; yÞ ¼ x3 � y3: ð122Þ

The boundary conditions on oB are simply set as zero. See Table 3 for the errors and Fig. 8 for the numerical
solutions on a 128 · 128 grid.

Example 5 (An interior Neumann BVP on an ellipse-shaped domain). The ellipse-shaped domain X is defined
by
ðx; yÞT
�� x2

0:82
þ y2

0:42
< 1

	 

: ð123Þ
Pure Neumann boundary conditions are applied on oX such that the exact solution is given by
uðx; yÞ ¼ sin
px
2

sin
py
2
: ð124Þ
The boundary conditions on oB are simply set as zero. Both cases of zero and non-zero reaction coefficients,
j = 0 and j = 1, are tested. In the case that j = 0, the solution to the pure Neumann BVP is not unique but
only up to an additive constant. To compute numerical errors, we translate the solution to the corresponding
interface problem by a constant such that the numerical solution matches the exact one at the center of the box
B. See Tables 5–7 for the errors and Fig. 9 for the numerical solutions on a 128 · 128 grid. Table 5 and Fig. 9



Table 8
Results from solving the anisotropic pure Neumann BVP on the ellipse-shaped domain (Example 6, j = 0 and the diffusion tensor is
aligned with the coordinate axis)

j = 0 Anisotropy ratio 8:1 Anisotropy ratio 20:1

MoX Grid size iehi2 iehi1 m iehi2 iehi1 m

30 64 · 64 3.26E�4 1.68E�3 6 6.23E�4 2.89E�3 8
60 128 · 128 7.67E�5 3.99E�4 6 1.05E�4 7.44E�4 7
120 256 · 256 1.24E�5 9.43E�5 6 2.17E�5 2.15E�4 7
240 512 · 512 3.60E�6 2.57E�5 6 5.63E�6 6.85E�5 7
480 1024 · 1024 8.34E�7 6.29E�6 6 1.43E�6 1.79E�5 7
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compare results for solving isotropic and moderately anisotropic Neumann BVPs. Table 6 shows the results
from solving the pure Neumann problem with the reaction coefficient vanishing (j = 0). Table 7 shows the
results with a non-zero reaction coefficient (j = 1).

The numerical results summarized in Tables 3–7 for the previous two examples indicate that, in the regime
with strong anisotropy ratios of the diffusion tensor, the method for solving Dirichlet BVPs and Neumann
boundary value Helmholtz problems (j 6¼ 0) performs much better than for the pure Neumann BVPs, where
the reaction coefficient is vanishing. For isotropic and moderately anisotropic BVPs, the numerical results
were consistent with the theoretical expectation for both the accuracy and efficiency of the method.

Example 6 (Continued, the pure Neumann BVP on an ellipse-shaped domain). To compare with the previous
example and investigate the effect of the orientation of the diffusion tensor on the accuracy and efficiency of
the method, in this example, we choose the diffusion tensor simply as
r ¼
k1

k2

� �
ð125Þ
with k1 = 1, k2 = 1/l and l > 1 being the anisotropy ratio. In words, the diffusion tensor is aligned with the
grid lines (coordinate axis). Other settings, including simulation parameters, boundary conditions and exact
solutions, are the same as Example 5, except that the reaction coefficient is fixed to be zero (j = 0). Numerical
results are summarized in Table 8.

Table 8 shows that the results from the KFBI method are consistent with that predicted by the theoretical
analysis when the diffusion tensor is aligned with the grid lines. Even for severely strong anisotropic Neumann
BVPs, the method still shows its second-order convergence rate in accuracy and grid-independent iteration
numbers when the grid is fine enough (size not less than 256 · 256 for the test problem).

12. Discussion

The KFBI method is stable and accurate for general (possibly anisotropic) elliptic boundary value prob-
lems. It employs a Krylov subspace method (the GMRES iteration) to compute the densities of the double
or single layer potential from the boundary integral equation, corresponding to the Dirichlet or Neumann
BVP. The Krylov subspace method is guaranteed to converge by the spectral properties of the double/single
layer boundary integral operators. For isotropic and moderately anisotropic BVPs, it is observed that the
number of GMRES iterations used is independent of the sizes of the grids employed. The volume and bound-
ary integrals, which are required by the GMRES iteration for updating the densities, are computed as limit
values of the structured grid-based approximate solutions. Because analytical expressions of Green’s functions
are not required, the method is kernel-free.

In this work, only the details for a second-order implementation of the KFBI method in two dimensions are
described. In principle, it is natural and straightforward to derive higher-order extensions of the method as
long as the elliptic operator L is discretized with a higher-order discretization scheme and the computation
of the jumps of the derivatives, the correction of the source term and the approximation of the integrals
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employ more grid nodes and more terms in the Taylor series. While the extension of the method to higher
space dimensions is also straightforward, the validity of the method for BVPs on domains with piecewise
smooth boundaries needs to be investigated.

The KFBI method is flexible as well as efficient. The regular domain B can be chosen arbitrarily to be a
triangle, a rectangle, a circle, a ring or any other regularly shaped domain as long as the Green’s function
on B exists and fast elliptic solvers are readily applicable. Additionally, it is important to know that the numer-
ical solutions on the structured grids can be obtained by a variety of discretization methods.

Because the method does not modify the stiffness matrix, which results from the discretization of the elliptic
operator with a standard discretization scheme, a standard linear system solver such as the fast Fourier trans-
form (FFT) based Poisson (Helmholtz) solvers or those based on geometric multigrid iterations can be easily
combined. For time- dependent problems, the KFBI method also has its advantage against those modifying
matrices in each timestep. Moreover, the KFBI method allows the edges adjacent to an irregular node to inter-
sect with the boundary of the complex domain several times. It has potential to work with coarse grids even
though the boundary curve is ‘‘very close to itself ’’.

The extension of the KFBI method for BVPs on multiply connected bounded domains will be studied in the
near future. As the standard boundary integral equation corresponding to a BVP on a multiply connected
domain is singular, some additional techniques have to be used for the KFBI method to be applicable.
One strategy is to add singular sources through introducing (regularized) delta function(s) [17] into the source
term of the BVP. An alternative one is to incorporate the explicit jump concept by Wiegmann and Bube [26].

As the spectrum of the boundary integral operators is contained in the interval (�1/2,1/2], iterative meth-
ods even as simple as (22) and (23) will converge as long as the structured grids used to compute the approx-
imate solutions are sufficiently fine. The convergence rate, however, may deteriorate in some situations when
the shape of the domain is not simple since the eigenvalues are closely clustered around the endpoints of the
interval (�1/2,1/2). As indicated by the numerical results from Example 3, the numbers of iterations used by
the GMRES method for problems on the mushroom-shaped and spiral-shaped domains are respectively twice
and three times those on simpler domains. To overcome the problem, an appropriate preconditioner for the
GMRES method should be pursued.

Finally the method can be applied to anisotropic BVPs if the anisotropy ratio is not too strong. For
strong anisotropy that is not aligned with the grid, the accuracy of the method may degrade. The loss of
accuracy is more obvious when the method is used to solve pure Neumann BVPs with a vanishing reaction
coefficient (j = 0). The explicit relationship between the anisotropy ratio, the orientation of the diffusion
tensor, the type of boundary conditions, the mesh parameter and error estimates is interesting and requires
further study.

The KFBI method presented here can be applied to a wide range of elliptic boundary value problems that
arise from the fields of fluid dynamics, material science and biophysics, including reaction diffusion modeling
in cardiac and neuro-electrophysiology. While some limitations exist, the KFBI method is straightforward to
implement and has demonstrated some advantages over other existing structured (Cartesian) grid methods.
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